Exercise 6.6.8 Consider a spring, as in Example 6.6.4. If the period of the oscillation is 30 seconds, find the spring constant k.
Exercise 6.6.9 As a pendulum swings (see the diagram), let t measure the time since it was vertical. The angle $\theta=\theta(t)$ from the vertical can be shown to satisfy the equation $\theta^{\prime \prime}+k \theta=0$, provided that θ is small. If the maximal angle is $\theta=0.05$ radians, find $\theta(t)$ in terms of
k. If the period is 0.5 seconds, find k. [Assume that $\theta=0$ when $t=0$.]

Supplementary Exercises for Chapter 6

Exercise 6.1 (Requires calculus) Let V denote the space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ for which the derivatives f^{\prime} and $f^{\prime \prime}$ exist. Show that f_{1}, f_{2}, and f_{3} in V are linearly independent provided that their wronskian $w(x)$ is nonzero for some x, where

$$
w(x)=\operatorname{det}\left[\begin{array}{ccc}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\
f_{1}^{\prime \prime}(x) & f_{2}^{\prime \prime}(x) & f_{3}^{\prime \prime}(x)
\end{array}\right]
$$

Exercise 6.2 Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of \mathbb{R}^{n} (written as columns), and let A be an $n \times n$ matrix.
a. If A is invertible, show that $\left\{A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{n}\right\}$ is a basis of \mathbb{R}^{n}.
b. If $\left\{A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{n}\right\}$ is a basis of \mathbb{R}^{n}, show that A is invertible.

Exercise 6.3 If A is an $m \times n$ matrix, show that A has rank m if and only if $\operatorname{col} A$ contains every column of I_{m}.
Exercise 6.4 Show that null $A=\operatorname{null}\left(A^{T} A\right)$ for any real matrix A.

Exercise 6.5 Let A be an $m \times n$ matrix of rank r. Show that $\operatorname{dim}(\operatorname{null} A)=n-r$ (Theorem 5.4.3) as follows. Choose a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ of null A and extend it to a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right\}$ of \mathbb{R}^{n}. Show that $\left\{A \mathbf{z}_{1}, \ldots, A \mathbf{z}_{m}\right\}$ is a basis of $\operatorname{col} A$.

